83 research outputs found

    Investigating Unique Environmental Contributions to the Neural Representation of Written Words: A Monozygotic Twin Study

    Get PDF
    The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture

    Robust and Task-Independent Spatial Profile of the Visual Word Form Activation in Fusiform Cortex

    Get PDF
    Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of specialization and selectivity of this so called visual word form area (VWFA) remains debated. In this study, we examined category selectivity for Chinese characters, a non-alphabetic script, in native Chinese readers. In contrast to traditional approaches of examining response levels in a restricted predefined region of interest (ROI), a detailed distribution of the BOLD signal across the mid-fusiform cortical surface and the spatial patterns of responses to Chinese characters were obtained. Results show that a region tuned for Chinese characters could be consistently found in the lateral part of the left fusiform gyrus in Chinese readers, and this spatial pattern of selectivity for written words was not influenced by top-down tasks such as phonological or semantic modulations. These results provide strong support for the robust spatial coding of category selective response in the mid-fusiform cortex, and demonstrate the utility of the spatial distribution analysis as a more meaningful approach to examine functional magnetic resonance imaging (fMRI) data

    Reading between Eye Saccades

    Get PDF
    Background: Skilled adult readers, in contrast to beginners, show no or little increase in reading latencies as a function of the number of letters in words up to seven letters. The information extraction strategy underlying such efficiency in word identification is still largely unknown, and methods that allow tracking of the letter information extraction through time between eye saccades are needed to fully address this question. Methodology/Principal Findings: The present study examined the use of letter information during reading, by means of the Bubbles technique. Ten participants each read 5,000 five-letter French words sampled in space-time within a 200 ms window. On the temporal dimension, our results show that two moments are especially important during the information extraction process. On the spatial dimension, we found a bias for the upper half of words. We also show for the first time that letter positions four, one, and three are particularly important for the identification of five-letter words. Conclusions/Significance: Our findings are consistent with either a partially parallel reading strategy or an optimal serial reading strategy. We show using computer simulations that this serial reading strategy predicts an absence of a wordlength effect for words from four- to seven letters in length. We believe that the Bubbles technique will play an importan

    Word Processing differences between dyslexic and control children

    Get PDF
    BACKGROUND: The aim of this study was to investigate brain responses triggered by different wordclasses in dyslexic and control children. The majority of dyslexic children have difficulties to phonologically assemble a word from sublexical parts following grapheme-to-phoneme correspondences. Therefore, we hypothesised that dyslexic children should mainly differ from controls processing low frequent words that are unfamiliar to the reader. METHODS: We presented different wordclasses (high and low frequent words, pseudowords) in a rapid serial visual word (RSVP) design and performed wavelet analysis on the evoked activity. RESULTS: Dyslexic children had lower evoked power amplitudes and a higher spectral frequency for low frequent words compared to control children. No group differences were found for high frequent words and pseudowords. Control children had higher evoked power amplitudes and a lower spectral frequency for low frequent words compared to high frequent words and pseudowords. This pattern was not present in the dyslexic group. CONCLUSION: Dyslexic children differed from control children only in their brain responses to low frequent words while showing no modulated brain activity in response to the three word types. This might support the hypothesis that dyslexic children are selectively impaired reading words that require sublexical processing. However, the lacking differences between word types raise the question if dyslexic children were able to process the words presented in rapid serial fashion in an adequate way. Therefore the present results should only be interpreted as evidence for a specific sublexical processing deficit with caution

    Activation of the Left Inferior Frontal Gyrus in the First 200 ms of Reading: Evidence from Magnetoencephalography (MEG)

    Get PDF
    BACKGROUND: It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. METHODOLOGY/PRINCIPAL FINDINGS: MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. CONCLUSIONS/SIGNIFICANCE: These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code

    Connectivity precedes function in the development of the visual word form area

    Get PDF
    What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.National Institutes of Health (U.S.) (Grant F32HD079169)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant F32HD079169)National Institutes of Health (U.S.) (Grant R01HD067312)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant R01HD067312

    Event-Related Potentials Reveal Rapid Verification of Predicted Visual Input

    Get PDF
    Human information processing depends critically on continuous predictions about upcoming events, but the temporal convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that, during reading, event-related potentials differ between exposure to highly predictable and unpredictable words no later than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition

    Facilitating Memory for Novel Characters by Reducing Neural Repetition Suppression in the Left Fusiform Cortex

    Get PDF
    Gui Xue is with Beijing Normal University and University of Southern California, Leilei Mei is with Beijing Normal University and University of California Irvine, Chuansheng Chen is with University of California Irvine, Zhong-Lin Lu is with University of Southern California, Russell A. Poldrack is with UT Austin, Qi Dong is with Beijing Normal University.Background -- The left midfusiform and adjacent regions have been implicated in processing and memorizing familiar words, yet its role in memorizing novel characters has not been well understood. Methodology/Principal Findings -- Using functional MRI, the present study examined the hypothesis that the left midfusiform is also involved in memorizing novel characters and spaced learning could enhance the memory by enhancing the left midfusiform activity during learning. Nineteen native Chinese readers were scanned while memorizing the visual form of 120 Korean characters that were novel to the subjects. Each character was repeated four times during learning. Repetition suppression was manipulated by using two different repetition schedules: massed learning and spaced learning, pseudo-randomly mixed within the same scanning session. Under the massed learning condition, the four repetitions were consecutive (with a jittered inter-repetition interval to improve the design efficiency). Under the spaced learning condition, the four repetitions were interleaved with a minimal inter-repetition lag of 6 stimuli. Spaced learning significantly improved participants' performance during the recognition memory test administered one hour after the scan. Stronger left midfusiform and inferior temporal gyrus activities during learning (summed across four repetitions) were associated with better memory of the characters, based on both within- and cross-subjects analyses. Compared to massed learning, spaced learning significantly reduced neural repetition suppression and increased the overall activities in these regions, which were associated with better memory for novel characters. Conclusions/Significance -- These results demonstrated a strong link between cortical activity in the left midfusiform and memory for novel characters, and thus challenge the visual word form area (VWFA) hypothesis. Our results also shed light on the neural mechanisms of the spacing effect in memorizing novel characters.This study was supported by the Program for New Century Excellent Talents in University, the National Science Foundation (grant numbers BCS 0823624 and BCS 0823495), the National Institute of Health (grant number HD057884-01A2), and the 111 Project of China (B07008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Psycholog

    A Common Left Occipito-Temporal Dysfunction in Developmental Dyslexia and Acquired Letter-By-Letter Reading?

    Get PDF
    We used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.Corresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which--corresponding to the onological deficit explanation--is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.The present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions

    Functional Foveal Splitting: Evidence from Neuropsychological and Multimodal MRI Investigations in a Chinese Patient with a Splenium Lesion

    Get PDF
    It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels
    corecore